ON THE LITTLEWOOD CONJECTURE IN SIMULTANEOUS DIOPHANTINE APPROXIMATION

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Littlewood conjecture in simultaneous Diophantine approximation

For any given real number α with bounded partial quotients, we construct explicitly continuum many real numbers β with bounded partial quotients for which the pair (α, β) satisfies a strong form of the Littlewood conjecture. Our proof is elementary and rests on the basic theory of continued fractions.

متن کامل

Around the Littlewood conjecture in Diophantine approximation

The Littlewood conjecture in Diophantine approximation claims that inf q≥1 q · ‖qα‖ · ‖qβ‖ = 0 holds for all real numbers α and β, where ‖ · ‖ denotes the distance to the nearest integer. Its p-adic analogue, formulated by de Mathan and Teulié in 2004, asserts that inf q≥1 q · ‖qα‖ · |q|p = 0 holds for every real number α and every prime number p, where | · |p denotes the p-adic absolute value ...

متن کامل

Simultaneous Diophantine Approximation on Planar

Let C be a non-degenerate planar curve. We show that the curve is of Khintchine-type for convergence in the case of simultaneous approximation in R 2 with two independent approximation functions; that is if a certain sum converges then the set of all points (x, y) on the curve which satisfy simultaneously the inequalities qx < ψ1(q) and qy < ψ2(q) infinitely often has induced measure 0. This co...

متن کامل

Simultaneous Diophantine Approximation

Using a method suggested by E. S. Barnes, it is shown that the simultaneous inequalities r(p — arf < c, r(q — fir) < c have an infinity of integral solutions p, q, r (with r > 0), for arbitrary irrationals a and /3, provided that c > 1/2.6394. This improves an earlier result of Davenport, who shows that the same conclusion holds if c > 1/46"" = 1/2.6043 • • •.

متن کامل

Simultaneous inhomogeneous Diophantine approximation on manifolds

In 1998, Kleinbock & Margulis [KM98] established a conjecture of V.G. Sprindzuk in metrical Diophantine approximation (and indeed the stronger Baker-Sprindzuk conjecture). In essence the conjecture stated that the simultaneous homogeneous Diophantine exponent w0(x) = 1/n for almost every point x on a non-degenerate submanifold M of Rn. In this paper the simultaneous inhomogeneous analogue of Sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the London Mathematical Society

سال: 2006

ISSN: 0024-6107,1469-7750

DOI: 10.1112/s0024610706022617