ON THE LITTLEWOOD CONJECTURE IN SIMULTANEOUS DIOPHANTINE APPROXIMATION
نویسندگان
چکیده
منابع مشابه
On the Littlewood conjecture in simultaneous Diophantine approximation
For any given real number α with bounded partial quotients, we construct explicitly continuum many real numbers β with bounded partial quotients for which the pair (α, β) satisfies a strong form of the Littlewood conjecture. Our proof is elementary and rests on the basic theory of continued fractions.
متن کاملAround the Littlewood conjecture in Diophantine approximation
The Littlewood conjecture in Diophantine approximation claims that inf q≥1 q · ‖qα‖ · ‖qβ‖ = 0 holds for all real numbers α and β, where ‖ · ‖ denotes the distance to the nearest integer. Its p-adic analogue, formulated by de Mathan and Teulié in 2004, asserts that inf q≥1 q · ‖qα‖ · |q|p = 0 holds for every real number α and every prime number p, where | · |p denotes the p-adic absolute value ...
متن کاملSimultaneous Diophantine Approximation on Planar
Let C be a non-degenerate planar curve. We show that the curve is of Khintchine-type for convergence in the case of simultaneous approximation in R 2 with two independent approximation functions; that is if a certain sum converges then the set of all points (x, y) on the curve which satisfy simultaneously the inequalities qx < ψ1(q) and qy < ψ2(q) infinitely often has induced measure 0. This co...
متن کاملSimultaneous Diophantine Approximation
Using a method suggested by E. S. Barnes, it is shown that the simultaneous inequalities r(p — arf < c, r(q — fir) < c have an infinity of integral solutions p, q, r (with r > 0), for arbitrary irrationals a and /3, provided that c > 1/2.6394. This improves an earlier result of Davenport, who shows that the same conclusion holds if c > 1/46"" = 1/2.6043 • • •.
متن کاملSimultaneous inhomogeneous Diophantine approximation on manifolds
In 1998, Kleinbock & Margulis [KM98] established a conjecture of V.G. Sprindzuk in metrical Diophantine approximation (and indeed the stronger Baker-Sprindzuk conjecture). In essence the conjecture stated that the simultaneous homogeneous Diophantine exponent w0(x) = 1/n for almost every point x on a non-degenerate submanifold M of Rn. In this paper the simultaneous inhomogeneous analogue of Sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the London Mathematical Society
سال: 2006
ISSN: 0024-6107,1469-7750
DOI: 10.1112/s0024610706022617